👤

[(2²⁰¹⁹+2²⁰¹⁹):(2^10³)-2¹⁹]:2¹² plssssssssssss dau coroana plssssssssss


Răspuns :

Răspuns:

Explicație pas cu pas:

Vezi imaginea MILADYDANCECLUB

Explicație pas cu pas:

[tex] \bf \big[ \big(2^{2019}+2^{2019}\big):\big(2^{10^{3}}\big )-2^{19}\big]:2^{12} = [/tex]

[tex]\bf \big[ 2^{2019} \cdot\big(2^{2019 - 2019}+2^{2019 - 2019}\big):2^{1000}-2^{19}\big]:2^{12} = [/tex]

[tex]\bf \big[ 2^{2019} \cdot\big(2^{0}+2^{0}\big):2^{1000}-2^{19}\big]:2^{12} = [/tex]

[tex]\bf \big[ 2^{2019} \cdot\big(1+1\big):2^{1000}-2^{19}\big]:2^{12} = [/tex]

[tex]\bf \big(2^{2019} \cdot2:2^{1000}-2^{19}\big):2^{12} = [/tex]

[tex]\bf \big(2^{2019 + 1 - 1000} - 2^{19}\big):2^{12} = [/tex]

[tex]\bf \big(2^{1020} - 2^{19}\big):2^{12} = [/tex]

[tex]\bf 2^{19}\cdot\big(2^{1020 - 19} - 2^{19 - 19}\big):2^{12} = [/tex]

[tex]\bf 2^{19}\cdot\big(2^{1001} - 2^{0}\big):2^{12} = [/tex]

[tex]\bf 2^{19 - 12}\cdot\big(2^{1001} - 1\big) = [/tex]

[tex] \red{ \boxed{\bf \: 2^{7}\cdot\big(2^{1001} - 1\big) \: }}[/tex]

==pav38==