Răspuns: [tex]\red{\bf~3^{-6}=\dfrac{1}{3^{6}} ~}[/tex]
Explicație pas cu pas:
[tex]\bf \bigg(\dfrac{9}{37}\bigg)^6\cdot \bigg(\dfrac{37}{27}\bigg)^6=\dfrac{9^6}{\not37^6}~\cdot~\dfrac{\not37^6}{27^6} =[/tex]
[tex]\bf\dfrac{9^6}{27^6}=\dfrac{(3^2)^6}{(3^3)^6} =\dfrac{3^{2\cdot6}}{3^{3\cdot6}} =\dfrac{3^{12}}{3^{18}} =3^{12}:3^{18}=[/tex]
[tex]\bf 3^{12-18}=\red{\boxed{\bf~3^{-6}=\dfrac{1}{3^{6}} ~}}[/tex]
==pav38==