Atunci am avea:
a+b=2,8
b+c=2,3
a+b-(b+c)=2,8-2,3
a+b-b-c=0,5
a-c=0,5
(a-c)(5a+8b+3c)
(a-c)(5a+5b+3b+3c)=(a-c)[5(a+b)+3(b+c)]=
0,5×(5×2,8+3×2,3)=0,5×(14+6,9)=0,5×20,9=10,45
a+b=2,8
b+c=2,3
a+b-(b+c)=2,8-2,3
a+b-b-c=0,5
a-c=0,5
a,b,c fractii zecimale
a=1,6
Atunci c=1,1
1,6+b=2,8
b=2,8-1,2=1,2
1,2+1,1=2,3 adevarat
Deci (a-c)(50+8b+3c)=0,5×(50+8×1,2+3×1,1)
(a-c)(50+8b+3c)=0,5×(50+9,6+3,3)
(a-c)(50+8b+3c)=0,5×62,9
(a-c)(50+8b+3c)=31,45