BQ bisectoarea lui ∡ABP
Trebuie sa aratam ca BP=CP+AQ
Prelungim AC pana in punctul N, astfel incat CN=AQ
∡PBC=60°-2x
∡QAN=∡ACB=60° (alterne interne)
∡BAQ=∡BAN+∡QAN=60+60=120°
∡BCN=180-∡ACB=180-60=120°
⇒ ∡BAQ=∡BCN (1)
Avem AB=BC (din ipoteza) (2)
AQ=CN (3)
∡AQB=∡CNB
⇒ ∡NBQ=60° (deoarece ∡ABC=60°=2x+∡PBC, deci ∡NBQ=x+x+∡PBC=∡ABC=60°)⇒ ∡NBP=60-x (1)
∡CBN=∡ABQ=x
In ΔCBN, ∡CBN=x, ∡BCN=120°⇒ ∡BNC=180-120-x=60-x (2)
Dar NP=PC+NC
Deci BP=CP+AQ