👤

Se consideră funcţia [tex]$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\frac{x^{2}+4 x+4}{e^{x}}$[/tex].

[tex]$5 p$[/tex] a) Arătaţi că [tex]$f^{\prime}(x)=\frac{-x(x+2)}{e^{x}}, x \in \mathbb{R}$[/tex].

[tex]$5 \mathbf{p}$[/tex] b) Determinaţi ecuaţia asimptotei orizontale spre [tex]$+\infty$[/tex] la graficul funcţiei [tex]$f$[/tex].

[tex]$5 p$[/tex] c) Demonstrați că [tex]$\lim _{n \rightarrow+\infty}(g(1)+g(2)+\ldots+g(n))=\frac{1}{e-1}$[/tex], unde [tex]$g:(0,+\infty) \rightarrow \mathbb{R}, g(x)=\frac{f(x)}{(x+2)^{2}}$[/tex].


Răspuns :

[tex]f(x)=\frac{x^{2}+4 x+4}{e^{x}}[/tex]

a)

Folosim formula de derivare a unei fractii:

[tex](\frac{f}{g} )'=\frac{f'g-fg'}{g^2}[/tex]

[tex]f'(x)=(\frac{x^{2}+4 x+4}{e^{x}})'=\frac{(2x+4)e^x-(x^2+4x+4)e^x}{e^{2x}} =\frac{e^x(2x+4-x^2-4x-4)}{e^{2x}} =\frac{-x^2-2x}{e^x} =\frac{-x(x+2)}{e^x}[/tex]

b)

Trebuie sa calculam limita spre +∞ din functia f(x)

[tex]\lim_{x \to \infty} \frac{x^{2}+4 x+4}{e^{x}}=\frac{\infty}{\infty} \ forma\ nedeterminata[/tex]

Aplicam L'Hospital, derivam numarator, derivam numitor si vom obtine:

[tex]\lim_{x \to \infty} \frac{(x^{2}+4 x+4)'}{(e^{x})'}=\lim_{x \to \infty} \frac{2x+4}{e^{x}}=\frac{\infty}{\infty} \ forma\ nedeterminata[/tex]

Aplicam iar L'Hospital si vom obtine:

[tex]\lim_{x \to \infty} \frac{(2x+4)'}{(e^{x}})'=\lim_{x \to \infty} \frac{2}{e^{x}}=\frac{2}{\infty} =0[/tex]

Ecuatia asimptotei orizontale este y=0

c)

[tex]g(x)=\frac{\frac{x^2+4x+4}{e^x} }{(x+2)^2} =\frac{\frac{(x+2)^2}{e^x} }{(x+2)^2} =\frac{1}{e^x}\\\\g(x)=\frac{1}{e^x}[/tex]

Calculam g(1)+g(2)+...+g(n)

[tex]g(1)+g(2)+...+g(n)=\frac{1}{e} +\frac{1}{e^2} +...+\frac{1}{e^n}[/tex]

Avem suma unei progresii geometrice care are formula:

[tex]S_n=b_1\frac{q^n-1}{q-1}[/tex], unde [tex]b_1=primul\ termen=\frac{1}{e} \\\\r=ratia=\frac{1}{e}[/tex]

[tex]g(1)+g(2)+...+g(n)=\frac{1}{e} \times \frac{(\frac{1}{e})^n-1 }{\frac{1}{e}-1 }[/tex]

[tex]\lim_{n \to \infty} \frac{1}{e} \times \frac{(\frac{1}{e})^n-1 }{\frac{1}{e}-1 } =-\frac{1}{e}\times \frac{1}{\frac{1-e}{e} } =\frac{1}{e-1}[/tex]

Nota:

[tex](\frac{1}{e} )^n,\ n- > +\infty\\\\(\frac{1}{e} )^\infty=0,\ deoarece\ este fractie\ subunitara[/tex]

Un exercitiu similar de bac gasesti aici: https://brainly.ro/tema/5855250

#BAC2022