2) Determinati numerele x_{y} * y_{r} ^ 2 * alud * u ^ 2 sunt invers proportionale x+y+2=361. 2;4 j m^ prime

Explicație pas cu pas:
[tex] \frac{x}{ \frac{1}{2} } = \frac{y}{ \frac{1}{4} } = \frac{z}{ \frac{1}{5} } = k \\ = > x = \frac{k}{2} ; y = \frac{k}{4} ;z = \frac{k}{5} \\ x + y + z = 361 \\ = > \frac{k}{2} + \frac{k}{4} + \frac{k}{5} = 361[/tex]
[tex] \frac{10k + 5k + 4k}{20} = 361 \\ \frac{19k}{20} = {19}^{2} = > k = 380 [/tex]
[tex]x = \frac{k}{2} = \frac{380}{2} = > x = 190 \\ [/tex]
[tex]y = \frac{k}{4} = \frac{380}{4} = > y = 95 \\ [/tex]
[tex]z = \frac{k}{5} = \frac{380}{5} = > z = 76 \\ [/tex]