👤

Se consideră funcţia [tex]$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=4 x-\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}$[/tex].

[tex]$5 p$[/tex] a) Arătaţi că [tex]$\int_{0}^{1}\left(x^{2}+1\right) f(x) d x=3$[/tex]
[[tex]$5 p$[/tex] b) Calculați [tex]$\int_{0}^{1} f(x) d x$[/tex]
[tex]$5 p$[/tex] c) Determinați numărul real a pentru care [tex]$\int_{1}^{e}\left(f(x)+\frac{2 x-1}{x^{2}+1}\right) \ln x d x=e^{2}+a$[/tex].


Răspuns :

[tex]f(x)=4 x-\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}[/tex]

a)

[tex]\int\limits^1_0 {(x^2+1)f(x)} \, dx =\int\limits^1_04x(x^2+1)-2x+1\ dx=\int\limits^1_04x^3+2x+1\ dx=\frac{4x^4}{4} |_0^1+x^2|_0^1+x|_0^1=1+1+1=3[/tex]

b)

[tex]\int\limits^1_0 {4 x-\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}} \, dx =2x^2|_0^1-ln(x^2+1)|_0^1+arctgx|_0^1=2-ln2+\frac{\pi}{4}[/tex]

(Vezi in atasament formulele de integrare si derivare)

c)

[tex]\int\limits^e_1 {(4x-\frac{2x}{x^2+1} +\frac{1}{x^2+1}+\frac{2x-1}{x^2+1})lnx } \, dx=\int\limits^e_1 4x lnx\ dx=4\int\limits^e_1 x lnx\ dx[/tex]

Notam [tex]I=\int\limits^e_1 x lnx\ dx[/tex]

O integram prin parti

[tex]f=lnx\ \ \ \ f'=\frac{1}{x} \\\\g'=x\ \ \ \ g=\frac{x^2}{2}[/tex]

[tex]I=\frac{x^2}{2}lnx|_1^e -\frac{1}{2}\int\limits^e_1 {x} \, dx \\\\I=\frac{x^2}{2}lnx|_1^e -\frac{1}{2}\cdot \frac{x^2}{2}|_1^e \\\\I=\frac{e^2}{2}-\frac{e^2}{4}+\frac{1}{4}[/tex]

[tex]4I=4(\frac{e^2}{2}-\frac{e^2}{4}+\frac{1}{4} )\\\\2e^2-e^2+1=e^2+a\\\\a=1[/tex]

Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/9882193

#BAC2022

#SPJ4

Vezi imaginea ANDREEAP
Vezi imaginea ANDREEAP