Răspuns :
[tex]A=\left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)[/tex]
[tex]B=\left(\begin{array}{cc}6 & -4 \\ -3 & 3\end{array}\right)[/tex]
1)
Calculam detA, facem diferenta dintre produsul diagonalelor
detA=2-2=0
2)
Calculam A·A-B
[tex]A\cdot A=\left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)\cdot \left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}6 & -6 \\ -3 & 3\end{array}\right)\\\\A\cdot A-B=\left(\begin{array}{cc}6 & -6 \\ -3 & 3\end{array}\right)-\left(\begin{array}{cc}6 & -4 \\ -3 & 3\end{array}\right)=\left(\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right)[/tex]
3)
Aratati ca det(AB-I₂)=det(BA-I₂)
[tex]A\cdot B=\left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)\cdot \left(\begin{array}{cc}6& -4 \\ -3 & 3\end{array}\right)=\left(\begin{array}{cc}18 & -14 \\ -9 & 7\end{array}\right)\\\\\left(\begin{array}{cc}18 & -14 \\ -9 & 7\end{array}\right)-\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)=\left(\begin{array}{cc}17 & -14 \\ -9 & 6\end{array}\right)\\\\\left|\begin{array}{cc}17 & -14 \\ -9 & 6\end{array}\right|=102-126=-24[/tex]
[tex]B\cdot A=\left(\begin{array}{cc}6& -4 \\ -3 & 3\end{array}\right)\cdot \left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}16 & -16 \\ -9 & 9\end{array}\right)\\\\\left(\begin{array}{cc}16 & -16 \\ -9 & 9\end{array}\right)-\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)=\left(\begin{array}{cc}15 & -16 \\ -9 & 8\end{array}\right)\\\\\left|\begin{array}{cc}15 & -16 \\ -9 & 8\end{array}\right|=120-144=-24[/tex]
Din cele doua rezulta ca det(AB-I₂)=det(BA-I₂)
4)
[tex]B-A=\left(\begin{array}{cc}6& -4 \\ -3 & 3\end{array}\right)- \left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}4 & -2 \\ -2 & 2\end{array}\right)\\\\\left(\begin{array}{cc}4 & -2 \\ -2 & 2\end{array}\right)+ \left(\begin{array}{cc}x &0 \\ 0 & x\end{array}\right)=\left(\begin{array}{cc}2& -2 \\ -2 & 0\end{array}\right)[/tex]
4+x=2
x=-2
5)
det(I₂+aA)+det(I₂-aA)=2
[tex]\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}2a & -2a \\ -a & a\end{array}\right)=\left(\begin{array}{cc}1+2a & -2a \\ -a & 1+a\end{array}\right)[/tex]
[tex]\left|\begin{array}{cc}1+2a & -2a \\ -a & 1+a\end{array}\right|=(1+2a)(1+a)-2a^2=1+3a+2a^2-2a^2=1+3a[/tex]
[tex]\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}2a & -2a \\ -a & a\end{array}\right)=\left(\begin{array}{cc}1-2a & 2a \\ a & 1-a\end{array}\right)[/tex]
[tex]\left|\begin{array}{cc}1-2a & 2a \\ a & 1-a\end{array}\right|=1-3a+2a^2-2a^2=1-3a[/tex]
det(I₂+aA)+det(I₂-aA)=1+3a+1-3a=2
6)
Notam [tex]C=I_2-A[/tex]
[tex]C=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right)[/tex]
[tex]X=C^{-1}\cdot A[/tex]
Calculam inversa matricei C
[tex]C^t=\left(\begin{array}{cc}-1 & 1 \\ 2& 0\end{array}\right)[/tex]
[tex]C^*=\left(\begin{array}{cc}0& -2 \\ -1 & -1\end{array}\right)[/tex]
detC=0-2=-2
[tex]C^{-1}=\left(\begin{array}{cc}0& 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)[/tex]
[tex]X=\left(\begin{array}{cc}0& 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)\cdot \left(\begin{array}{cc}2& -2 \\ -1 & 1 \end{array}\right)=\left(\begin{array}{cc}-1& 1 \\ \frac{1}{2} &- \frac{1}{2} \end{array}\right)[/tex]
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/1857848
#BAC2022
#SPJ4
Vă mulțumim că ați vizitat site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Dacă aveți întrebări sau nevoie de asistență suplimentară, nu ezitați să ne contactați. Ne vedem curând și nu uitați să ne adăugați la marcaje!