👤

Se consideră matricea [tex]$A(a)=\left(\begin{array}{cc}1 & \ln a \\ 0 & 1\end{array}\right)$[/tex], unde [tex]$a \in(0,+\infty)$[/tex].

[tex]$5 \mathbf{a}$[/tex] a) Arătați că [tex]$\operatorname{det}(A(a))=1$[/tex], pentru orice [tex]$a \in(0,+\infty)$[/tex].

[tex]$5 \mathbf{p}$[/tex] b) Demonstrați că [tex]$A(a) \cdot A(b)=A(a b)$[/tex], pentru orice [tex]$a, b \in(0,+\infty)$[/tex].

[tex]$5 p$[/tex] c) Determinați [tex]$a \in(0,+\infty)$[/tex], astfel incât [tex]$A(a) \cdot A(a) \cdot A(a)=\left(\begin{array}{cc}1 & 2020 \\ 0 & 1\end{array}\right)$[/tex].


Răspuns :

[tex]A(a)=\left(\begin{array}{cc}1 & \ln a \\ 0 & 1\end{array}\right)[/tex]

a)

Aratati ca det(A(a))=1

Facem diferenta dintre produsul diagonalelor

det(A(a))=1-0=1

b)

[tex]A(a)\cdot A(b)=\left(\begin{array}{cc}1 & \ln a \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{cc}1 & \ln b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & \ln a+lnb \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & \ln ab \\ 0 & 1\end{array}\right)=A(ab)[/tex]

c)

Ne folosim de punctul b

A(a)·A(a)=A(a²)

A(a²)·A(a)=A(a³)

[tex]\left(\begin{array}{cc}1 & \ln a^3 \\ 0 & 1\end{array}\right)=A(a)=\left(\begin{array}{cc}1 & 2020 \\ 0 & 1\end{array}\right)[/tex]

[tex]lna^3=2020\\\\3lna=2020\\lna=\frac{2020}{3}\\\\ a=e^{\frac{2020}{3}}[/tex]

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9918945

#BAC2022

#SPJ4