👤

Se consideră matricele [tex]$A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), O_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$[/tex] şi [tex]$B=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$[/tex].

5p 1. Calculaţi det [tex]$A$[/tex].

5 2. Arătaţi că [tex]$A^{2}-2 A+I_{2}=O_{2}$[/tex], unde [tex]$A^{2}=A \cdot A$[/tex].

[tex]$5 p$[/tex] 3. Determinaţi numerele reale [tex]$m$[/tex] pentru care [tex]$\operatorname{det}((m-1) A)=m+1$[/tex].

5p 4. Arătaţi că [tex]$A \cdot B=B \cdot A=I_{2}$[/tex].

5p 5. Demonstrați că, dacă [tex]$X \in \mathcal{M}_{2}(\mathbb{R})$[/tex] astfel încât [tex]$A \cdot X=X \cdot A$[/tex], atunci [tex]$X=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$[/tex], unde [tex]$a$[/tex] și [tex]$b$[/tex] sunt numere reale

6. Determinaţi numerele reale [tex]$x$[/tex] şi [tex]$y$[/tex], ştiind că [tex]$x A+y B=\left(\begin{array}{cc}5 & -2 \\ 0 & 5\end{array}\right)$[/tex].


Răspuns :

[tex]A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)[/tex]

[tex]B=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)[/tex]

1)

Calculam detA, facem diferenta dintre produsul diagonalelor

detA=1×1-2×0=1-0=1

2)

[tex]A^2-2A+I_2=O_2[/tex]

[tex]A^2=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)\\\\A^2-2A+I_2=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)-2\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=O_2[/tex]

3)

det((m-1)A)=m+1

(m-1)²-0=m+1

m²-2m+1=m+1

m²-3m=0

m(m-3)=0

m=0 si m=3

4)

A·B=B·A=I₂

[tex]A\cdot B=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{ll}1 & -2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)[/tex]

[tex]B\cdot A=\left(\begin{array}{ll}1 & -2 \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)[/tex]

5)

[tex]A\cdot X=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{ll}a &b \\ 0 &a\end{array}\right)=\left(\begin{array}{ll}a & b+2a \\ 0 & a\end{array}\right)[/tex]

[tex]X\cdot A=\left(\begin{array}{ll}a &b \\ 0 &a\end{array}\right)\cdot \left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}a & b+2a \\ 0 & a\end{array}\right)[/tex]

6)

[tex]xA+yB=\left(\begin{array}{ll}x& 2x \\ 0 & x\end{array}\right)+ \left(\begin{array}{ll}y & -2y \\ 0 & y\end{array}\right)=\left(\begin{array}{ll}x+y & 2x-2y \\ 0 & x+y\end{array}\right)[/tex]

x+y=5

2x-2y=-2   |:2

x-y=-1

x+y=5

x-y=-1

Le adunam

2x=4

x=2 si y=3

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9919024

#BAC2022

#SPJ4