👤

ajutorrrrrr!!!!10 inecuatii​

Ajutorrrrrr10 Inecuatii class=

Răspuns :

Explicație pas cu pas:

1)

[tex]4{x}^{2} + 2x - 2 > 0 \\ 2(2 {x}^{2} + x - 1) > 0 \\ 2(x + 1)(2x - 1) > 0 \\ 2(x + 1)(2x - 1) = 0 [/tex]

[tex]x_{1} = - 1 \\ x_{2} = - \frac{1}{2} \\ [/tex]

[tex]- \infty < x < - 1 \: sau \: \frac{1}{2} < x < + \infty \\[/tex]

2)

[tex] - 2 {x}^{2} + 3x + 3 < 0[/tex]

[tex]- 2 {x}^{2} + 3x + 3 = 0[/tex]

Δ = 3² + 4•2•3 = 9 + 24 = 33

[tex]x_{1} = \frac{ - 3 + \sqrt{33} }{- 4} = \frac{3 - \sqrt{33} }{4} \\x_{2} = \frac{ - 3 - \sqrt{33} }{- 4} = \frac{3 + \sqrt{33} }{4} [/tex]

[tex]- \infty < x < \frac{3 - \sqrt{33} }{4} \: sau \: \frac{3 + \sqrt{33} }{4} < x < + \infty \\[/tex]

3)

[tex]- {x}^{2} + 4x - 9 \geqslant 0 \\ - (x - 2)^{2} - 5 \geqslant 0[/tex]

[tex]fara \: solutii \: in \: multimea \: numerelor \: reale[/tex]

4)

[tex]4{x}^{2} - 5x + 12 \leqslant 0[/tex]

[tex]4{x}^{2} - 5x + 12 = 0[/tex]

Δ = (-5)² -4•4•12 = 25 - 192 = -167 < 0

fără soluții în mulțimea numerelor reale

5)

[tex]- 2{x}^{2} - 3x + 1 \geqslant 0[/tex]

[tex]- 2{x}^{2} - 3x + 1 = 0[/tex]

Δ = (-3)² + 4•2 = 9 + 8 = 17

[tex]x_{1} = \frac{3 + \sqrt{17} }{ - 4} = - \frac{3 + \sqrt{17} }{4} \\ x_{1} = \frac{3 - \sqrt{17} }{ - 4} = - \frac{ 3 - \sqrt{17}}{4} [/tex]

[tex]- \frac{3 - \sqrt{17}}{4} \leqslant x \leqslant - \frac{3 + \sqrt{17}}{4} \\[/tex]

6)

[tex]{x}^{2} + x + 1 > 0[/tex]

[tex]{\left(x + \frac{1}{2} \right)}^{2} + \frac{3}{4} > 0 \\ [/tex]

[tex]- \infty < x < + \infty[/tex]

7)

[tex]- {x}^{2} + x - 1 < 0 \\ - {\left(x - \frac{1}{2} \right)}^{2} - \frac{3}{4} < 0[/tex]

[tex] - \infty < x < + \infty [/tex]

8)

[tex]{x}^{2} - x - 1 \leqslant 0 [/tex]

[tex]{x}^{2} - x - 1 = 0[/tex]

Δ = 1 + 4 = 5

[tex]x_{1} = \frac{1 - \sqrt{5} }{2} \\ x_{1} = \frac{1 + \sqrt{5} }{2} [/tex]

[tex]\frac{1 - \sqrt{5} }{2} \leqslant x \leqslant \frac{1 + \sqrt{5} }{2} \\ [/tex]

9)

[tex]{x}^{2} - x + 1 \geqslant 0[/tex]

[tex]{\left(x - \frac{1}{2} \right)}^{2} + \frac{3}{4} \geqslant 0 \\ [/tex]

[tex] - \infty < x < + \infty [/tex]

10)

[tex]-{x}^{2} - x - 1 \geqslant 0[/tex]

[tex]- {\left(x + \frac{1}{2} \right)}^{2} - \frac{3}{4} \geqslant 0 \\ [/tex]

fără soluții în mulțimea numerelor reale