Răspuns:
inversul lui a = [tex]\frac{1}{2}[/tex]
Explicație pas cu pas:
[tex]a = (\frac{6}{\sqrt{18} } + \frac{4}{\sqrt{8} } - \frac{2}{\sqrt{2} } ) : \frac{\sqrt{2} }{2}[/tex]
[tex]a = (\frac{6}{\sqrt{9*2} } + \frac{4}{\sqrt{4*2} } - \frac{2}{\sqrt{2} } )*\frac{2}{\sqrt{2} }[/tex]
[tex]a = (\frac{6}{3\sqrt{2} } + \frac{4}{2\sqrt{2} } - \frac{2}{\sqrt{2} } )*\frac{2}{\sqrt{2} }[/tex]
[tex]a = (\frac{2}{\sqrt{2} } + \frac{2}{\sqrt{2} } - \frac{2}{\sqrt{2} } )*\frac{2}{\sqrt{2} }[/tex]
[tex]a = \frac{2}{\sqrt{2} } * \frac{2}{\sqrt{2} }[/tex]
[tex]a = \frac{4}{2} = 2[/tex]
Acum calculăm inversul lui a:
[tex]\frac{1}{a} = \frac{1}{2}[/tex]