👤

Se consideră funcţia [tex]$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}+\frac{x}{\sqrt{x^{2}+9}}$[/tex].

[tex]$5 \mathbf{p}$[/tex] a) Arătați că [tex]$\int_{0}^{1}\left(f(x)-\frac{x}{\sqrt{x^{2}+9}}\right) d x=\frac{1}{3}$[/tex].

[tex]$5 \mathbf{p}$[/tex] b) Calculatii [tex]$\int_{0}^{4}(f(x)-f(-x)) d x$[/tex].

[tex]$5 p$[/tex] c) Determinați numărul real [tex]$a, a\ \textgreater \ 4$[/tex], astfel încât [tex]$\int_{4}^{a} \frac{f(x)}{x} d x=10+\ln \frac{a+\sqrt{a^{2}+9}}{9}$[/tex].


Răspuns :

[tex]f(x)=x^{2}+\frac{x}{\sqrt{x^{2}+9}}[/tex]

a)

[tex]\int\limits^1_0 {x^2} \, dx =\frac{x^3}{3}\ |_0^1=\frac{1}{3}[/tex]

(vezi tabelul de integrale din atasament)

b)

[tex]\int\limits^4_0 {x^2+\frac{x}{\sqrt{x^2+9} } -x^2+\frac{x}{\sqrt{x^2+9} } \, dx =\\\\=\int\limits^4_0 {\frac{2x}{\sqrt{x^2+9} } \, dx[/tex]

[tex]\int\limits^4_0 {\frac{2x}{\sqrt{x^2+9} } \, dx=2\sqrt{x^2+9}\ |_0^4=2\sqrt{16+9}-2\sqrt{0+9} =10-6=4[/tex]

c)

[tex]\int\limits^a_4 {x+\frac{1}{\sqrt{x^2+9} } } \, dx[/tex]

Desfacem in doua integrale si obtinem:

[tex]\frac{x^2}{2}\ |_4^a+ln(x+\sqrt{x^2+9}) \ |_4^a=\frac{a^2}{2}-8+ln(a+\sqrt{a^2+9} ) -ln9=\frac{a^2}{2}-8+ln\frac{a+\sqrt{a^2+9} }{9}[/tex]

[tex]\frac{a^2}{2}-8+ln\frac{a+\sqrt{a^2+9} }{9} =10+ln\frac{a+\sqrt{a^2+9} }{9}\\\\\frac{a^2}{2}-8=10\\\\\frac{a^2}{2}=18\\\\a^2=36\\a=6\\\\a=-6 < 4\ NU[/tex]

a=6

Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/8885003

#SPJ4

Vezi imaginea ANDREEAP