👤

Demonstrati ca in orice triunghi ABC are loc egalitatea:
[tex]\frac{cos A}{sin B sin C}[/tex] + [tex]\frac{cos B}{sin A sin C}[/tex] + [tex]\frac{cos C}{sin A sin B}[/tex]


Răspuns :

Aducem la acelasi numitor comun egalitatea si obtinem:

[tex]\frac{sinAcosA+sinBcosB+sinCcosC}{sinAsinBsinC}[/tex]

Amplificam cu 2 toata egalitatea si tinem cont ca 2sinAcosA=sin2A (formula unghiului dublu)

[tex]\frac{2sinAcosA+2sinBcosB+2sinCcosC}{2sinAsinBsinC} =\frac{sin2A+sin2B+sin2C}{2sinAsinBsinC}[/tex]

[tex]sin2A+sin2B=2sin(\frac{2A+2B}{2})cos(\frac{2A-2B}{2})=2sin(A+B)cos(A-B)[/tex]

[tex]sin2A+sin2B+sin2C=2sin(A+B)cos(A-B) +sin2C[/tex]

Stim ca A+B+C=π

A+B=π-C

[tex]2sin(A+B)cos(A-B) +sin2C=2sinCcos(A-B)+2sinCcosC=2sinC(cos(A-B)+cos(\pi-(A+B)))[/tex]

[tex]=2sinC(cos(A-B)+cos(A+B)=2sinC\cdot 2sinAsinB=4sinCsinAsinB[/tex]

Inlocuim la numarator si obtinem:

[tex]\frac{4sinAsinBsinC}{2sinAsinBsinC} =2[/tex]

Un alt exercitiu gasesti aici: https://brainly.ro/tema/1031524

#SPJ1