Ofer coroană!! Vă rog ajutați-mă!

a)
[tex]\it AB=BC=CD=AD=12\ cm;\ \ AE=EB=12:2=6cm;\\ \\ BF=2CF\Big|_{+CF} \Rightarrow BF+CF=3CF \Rightarrow BC=3CF\Big|_{:3} \Rightarrow CF=BC:3=4cm\\ \\ \\ BF=2CF=2\cdot4=8cm[/tex]
[tex]\it \mathcal{A}_{D EF}=\mathcal{A}_{ABCD}-(\mathcal{A}_{ADE}+\mathcal{A}_{BEF}+\mathcal{A}_{CFD})=\\ \\ \\ =12^2-\Big(\dfrac{6\cdot12}{2}+\dfrac{6\cdot8}{2}+\dfrac{4\cdot12}{2}\Big)=144-(36+24+24)=144-84=60cm^2[/tex]
b)
[tex]\it Cu \ \ teorema \ \ lui\ \ Pitagora \Rightarrow DE=6\sqrt5\ cm;\ \ DF=4\sqrt10\ cm.\\ \\ \\\mathcal{A}_{D EF}=\dfrac{DE\cdot DF\cdot sin (EDF)}{2} \Rightarrow 60=\dfrac{6\sqrt5\cdot4\sqrt{10}\cdot sin(EDF)}{2} \Rightarrow \\ \\ \\ \Rightarrow 60=12\sqrt{50}\cdot sin(EDF) \Rightarrow sin(EDF)=\dfrac{60}{12\sqrt{50}}=\dfrac{5}{5\sqrt2}=\dfrac{1}{\sqrt2}=\dfrac{\sqrt2}{2}\\ \\ \\ Dar,\ \ sin45^o=\dfrac{\sqrt2}{2},\ \ deci\ \ \widehat{EDF}=45^o\ .[/tex]
Răspuns:
a) 60 cm²; b) 45°
Explicație pas cu pas:
ABCD este pătrat => AB=BC=CD=AD = 12 cm
AE ≡ EB
AE = EB = ½×AB = ½× 12
=> AE = 6 cm, EB = 6 cm
BF = 2CF => CF = ⅓×BC = ⅓×12
=> CF = 4 cm
BF = 12 - 4 => BF = 8 cm
Aria(DEF) = Aria(ABCD) - Aria(AED) - Aria(BEF) - Aria(CDF) = AB² - ½×AE×AD - ½×BE×BF - ½×DC×CF = 12² - ½×(6×12 + 6×8 + 12×4) = 144 - ½×(72+48+48) = 144 - ½×168 = 144 - 84 = 60
=> Aria(DEF) = 60 cm²
b)
T.P. în ΔADE:
DE² = AD² + AE² = 12² + 6² = 180
=> DE = 6√5 cm
T.P. în ΔCDF:
DF² = DC² + CF² = 12² + 4² = 160
=> DF = 4√10 cm
Aria(DEF) = ½×DE×DF×sin(∢EDF)
60 = ½×6√5×4√10×sin(∢EDF)
60 = 60√2×sin(∢EDF)
=> sin(∢EDF) = 1/√2 => ∢EDF = 45°
q.e.d.